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Models for growth in disordered media, which are deterministic once the ran- 
dom environment is specified, can be transformed into stochastic growth pro- 
cesses with a time-dependent noise. The mapping generally induces a memory in 
the stochastic process. This transformation is proposed and discussed in detail. 
An approximation scheme is worked out analytically and possible applications 
are discussed. 
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1. INTRODUCTION 

Off-equilibrium dynamics and the effect of quenched disorder are two of 
the most  interesting topics of  research in statistical mechanics. When 
s tudying systems that  involve dynamics  in a r andom medium,  which 
possesses both  of  these ingredients,  one faces a lack of  powerful theoretical  
methods  and is often forced to resort  to numerical  simulation.  On the other  
hand,  the dynamics  of  d isordered systems is character ized by a large 
variety of  exotic phenomena ,  such as stretched exponent ial  relaxat ion and 
memory  effects in charge density waves, I1~ aging in spin glasses, 12~ self- 
organized criticality, t3~ and tempora l  multiscaling/4~ The intent ion of  this 
paper  is to suggest a me thod  that  can contr ibute  both  to an advance in the 
theoret ical  unders tanding  and to a b roadening  of the amoun t  of informa- 
tion that  can be extracted via numerical  simulation.  

We will focus on a model  for the evolut ion of  an aggregate where the 
mechanism of growth depends  only on the extreme statistics of  the random 
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environment. In other words, randomness enters the model through a ran- 
dom potential e(x) that depends on the position x; growth occurs at the 
point that, among those accessible for growth, has the smallest random 
potential. This mechanism is a model for various situations, such as fluid 
flow in porous media or zero-temperature dynamics in statistical systems 
with disorder. Classic examples of models of this kind are invasion percola- 
tion/ 5) and the kinetic random-field Ising modelJ 61 Models recently intro- 
duced for interface growth in random media ~41 and of biological evolu- 
tion c3~ are based on this same mechanism. The great interest in these 
models, apart from their applications, lies in the fact that they show 
long-range space-time correlations typical of a statistical system at a 
second-order critical point. This happens "spontaneously" without the tem- 
perature fine tuning that makes a system like the Ising model critical. For 
this reason these models are typical examples of the very active field of 
self-organized criticality. 

This paper is based on the idea that such models may be viewed as 
cognitive processes that involve testing the random environment. This 
observation can be translated into a mathematical formalism, using the 
rules of conditional probability, that specifies the evolution of the run time 
statistics of the random environment. This is the effective probability 
distribution in which the information on the history of the process is stored 
in a conditional way. This idea was introduced by Pietronero and 
Schneider in the fixed scale transformation ~7~ approach to invasion percola- 
tionJ s~ It has, in our opinion, a much wider application and provides a 
general mapping of a quenched growth process, which is deterministic with 
a space-dependent randomness, to an annealed stochastic process, which is 
a process with a time-dependent randomness. The latter is specified by a 
probability distribution for the individual growth events at each time that 
contains the average on all realizations of the disorder with that given 
history. The growth probability distribution embodies the screening effect 
which is the origin of the interesting behavior of these systems. It also 
provides the probability of a given realization and allows one in principle 
to perform averages on the space of all realizations. In the following 
exposition we intend to give more emphasis to the application of these 
ideas than to the specific results for some particular model. Along with 
some references to particular models discussed in the paper, the concluding 
section is an attempt to remedy this choice of generality. 

The paper is organized as follows: the model we deal with is defined 
in Section 2, where also the notations are introduced. In Section 3 the map- 
ping of the quenched growth process to a stochastic process is discussed in 
general, introducing the concept of the run time statistics. This is the first 
important result. In the following section the basic equations are then 
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solved in a simple approximation for the empiricaldistribution that in its 
turn provides information on all the other quantities that characterize the 
process. The case of invasion percolation is discussed first to illustrate the 
method, the approximations involved, and how these can be controlled. 
The solution of the general case is an easy extension of the results on inva- 
sion percolation. A general relation for the critical threshold that marks the 
location of the discontinuity in the empirical distribution is derived. This 
extends a known rigorous result for invasion percolation t9~ to the general 
model. A particular limit of the model that is realized in recently proposed 
models for interface growth t41 and biological evolution c3~ is next analyzed 
in detail. There the relaxation to the stationary state is investigated, prov- 
iding an explicit expression for the relaxation time. The following section 
deals with the asymptotic limit of an infinite cluster. The characterization 
of the process in this limit allows the evaluation of the avalanche size 
distribution. The relevance of the present approach to applications of 
methods like the dynamic renormalization group and the fixed scale trans- 
formation is discussed. Other applications and extensions of the ideas and 
results contained in the previous sections are discussed in the last section. 

2. T H E  M O D E L  

We consider a model defined on a lattice. A random variable 
e;e [0, l ] is assigned to every site of the lattice. These are all independent 
and they are drawn from the same distribution Po.o(X) = Prob(e~ < x). Here 
and in the following we will use lowercase letters for probability densities, 
while uppercase letters stand for the corresponding distribution [e.g., 
F ( x ) = ~ g f ( y )  dy].  Both e~ and the their distributions can be defined in 
[0, 1 ] without loss of generality. We will refer to site models, the extension 
to the bond version being trivial. Once the disorder is assigned, the process 
is deterministic. This is best explained by the example of site invasion per- 
colation t5'91 (IP), a model for fluid displacement in porous media. One seed 
site i0 is initially chosen. Among its nearest neighbor, the one with the 
smallest random variable i~ is added to io at the t =  1 time step. Next 
the site with the smallest random variable among the perimeter sites of the 
two-site cluster cgl={i  o, il} is selected and added to the cluster. At a 
generic time t the next site to be added to cg, = { io ..... i ,_ t } is the one with 
the smallest ei, where i labels one of the sites on the perimeter Ocgt of the 
cluster ~,. 

This model is generalized as follows: growth starts from a set of seed 
sites cr o. This defines also a corresponding set of active sites Orgo, usually on 
the perimeter of :go. Among these the one with the smallest random 
variable, i.e., eio = min{ej; j ~ OCgo}, is selected as the initiator of the growth 
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event at time O. A deterministic rule then specifies the set of sites fro that, 
along with io, become part of the new cluster f l  = f o w  fro u {io}- In the IP 
case (r ~ -  The same mechanism is repeated at later times: given the 
cluster set f , ,  the set of active sites Of, is identified. Among these the one, 
i,, with the smallest variable initiates the growth event by which a set ~,,, 
together with i,, is removed from 0ff, and is added to the cluster f , + l =  
f ,  wff~w{i ,} .  

In Section 4.3 we discuss some recently proposed models for interface 
growth ~4) in a disordered medium that fit this general definition of the 
model. Here along with i, also sites from the close neighborhood of i, are 
allowed to grow to mimic the effect of surface tension. Also a recent model 
of biological evolution t3~ exploits the same mechanism. 

This class of models are simple prototypes of systems that display a 
self-organized critical behavior. Indeed IP is known 15"9) to reproduce the 
geometrical properties of standard percolation right at criticality without 
fine tuning any temperature-like parameter. 

3. RUN T IME STATISTICS 

The central idea, originally introduced by Pietronero and Schneider ~s) 
in the fixed scale transformation approach to IP, of the present approach 
is that, as the process goes on, it accumulates information on the random 
environment. Using the rules of conditional probability, this information 
can be expressed in the effective distributions of the random variables in 
0f, .  At any time step, all the variables e~, for i ~ O f ,  are tested to decide 
which is the minimum, e~,. For the one ( i =  i,) that "wins" we acquire the 
information that it has been the smallest among all. For the others we 
know that they were not the smallest at that time. This can be directly 
translated into a formula for the effective probability density p~(x, t) of the 
variables e; at time t, which we will call hereafter run time statistics (RTS). 
Before doing this it is essential to note that the distribution of e~ for iE 0f ,  
depends only on the number t~ of times it has been tested or, which is the 
same, on the time ri it has been in the set of active sites. We then choose 
the notation p,.,(x) for the RTS of variables that have been tested t times 
and n~., for the number of these sites. Here N, = ~ n,., = [0f,[ is the total 
number of sites in 0f , .  Once the distribution n~., and the RTS p~.,(x) are 
given, the probability that a variable ei with t~ = r initiates growth is 

1 

= I_ p~.,(x) l-I [ 1 - Pk.,(Y) dY] "*''-~k'~ Ig., (1) 
- i )  k 

This is indeed the probability that tj > e~ for all j r i. Here the Kronecker 
delta 6k.~ comes because the contribution of the variable e,. itself does not 
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appear in the product. The normalization of this growth probability 
distribution (GPD) is easily proved introducing the function 

Z,(x)  = 1-I [ 1 - P~,,(x)] .... (2) 

and observing that Z ,  n,.,lZ,., = - ~  OxZ,(x) dx = 1. 
Once a site i, with zi, = z is selected according to this GPD, its density 

is updated in a conditional way with the information that ei, < ej for all 
j 4: i,. So it becomes 

1 
m,(x ] r) = -  p,. ,(x) I-I [ 1 - Pk.,(x) ] "*.'-~*,' (3) 

f l r ,  t k 

The distribution of the other tj for j ~ 0~, is updated with the information 
that ej > ei,. The rules of conditional probability, if zj--O, yield 

M , ( x  l r) 
Po+ ].,+ i(X) - -  i l  Po.,(Y) M,(y. I r) dy po.,(x) (4) 

which also expresses the fact that now the variable ej has been tested rj + 1 
times. The sites in ~, are added to the cluster. Their RTS no longer evolve. 
The other ones remain in the set 0if,+1 of active sites. Finally no.,+1 sites 
eventually enter the interface Ocg, +1 as they are reached by the growing 
cluster. Their probability distribution is of course the original one 
Po., + 1(x) = Po.o(X). 

Accordingly the distribution no,, is updated: no+l.,+~ = n o . , -  
go . , -  6~.o, where go., is the number of sites in ~, with r ;=  0. 

The evolution of the process is completely specified by the initial 
conditions %,  0%, and Po.o(X), the above set of equations, and by the 
deterministic rules used to identify the set ~ .  Equations (1)-(4) provide a 
general mapping of a quenched process, i.e., a deterministic process in a 
random environment, to an annealed stochastic process with a time- 
dependent randomness. The GPD,  Eq. (1), as well as the RTS, depends in 
general on the whole history of the process. This memory is stored in the 
distributions of individual variables and generally makes it less likely for an 
old variable to grow than for a younger one. The memory effect extends 
over a time T =  maxi.yee~r ' { r i--r j}.  Indeed if all variables have experienced 
the same history, no memory effect at all is present and/z~., = l /N, .  

A mapping between quenched and annealed models was proposed in 
ref. 10 for the dielectric breakdown model. This was actually in the direc- 
tion opposite to that discussed here: a stochastic model was mapped to a 
quenched model. As a result a spatial correlation in the disorder was 
induced. It is interesting to note that the reverse path discussed here 
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produces a t ime correlation, i.e., a memory ,  in the stochastic model. 
Moreover,  in ref. l0 it was found that this correlation is not present when 
growth is allowed on all sites (i.e., i f0~,  contains all sites that are not in cg,) 
and results in a disconnected cluster. This is consistent with the evident fact 
that, in our formalism, no memory  is produced in the reverse t ransforma- 
tion. This is because the distributions of  all sites are condit ioned on the 
same history in disconnected growth. Actually this argument  is not 
rigorous in the case of  the quenched version of the dielectric breakdown 
model since there the r andom potential  is coupled to the Laplace field/~~ 

The choice of  the initial probabil i ty density Po.o(X) is clearly unessen- 
tial. One can safely restrict attention to the uniform density in [0, l ], since 
the G P D  is invariant under the t ransformation x ~ J" Po.o(Y)dy that  maps  
any density to the uniform one. 

The probabil i ty  densities po.,(x) and m,(x [ ~) are themselves random. 
Iteration of Eq. (4) implies that 

t - - I  

po,,(x)= A I-I Mk(xlz~.)  (5) 
k = t - O  

where A is the normalizat ion constant  and rk is the v value of the smallest 
variable at time k. The noise acts in a multiplicative fashion on the 
distributions and this may  be related to the occurrence of multiscaling in 
quenched processes. 14) 

4. SOLUTION FOR THE EMPIRICAL DISTRIBUTION 

The starting point of the analysis of the set of equations (1)-(4)  is the 
relation 

t - - I  

Pi, t (x) 'k  2 Pi.,(x)=lOCg, l+l~ , l=N,  + ~ ( G k + l )  (6) 
i e 0 %  i e %  k = O  

where p~.,(x) is the RTS of the variable e~, G , +  1 = ~ r  g , . , +  1 = laJ, I + 1 is 
the total number  of  sites that  grow at time t, and Po.o(x) = 1 was used. This 
identity is, in a sense, a "law of conservation of information." The history 
of the process up to time t gives only information on how the probabil i ty 
is distributed among  the two sums in Eq. (6), but it cannot  affect the value 
of their sum. Equat ion (6) also introduces the empirical distribution 
h,(x) = Zi~e~, Pi, t(x) that  is the his togram of the r andom variables on the 
interface (note that the same name in the literature was used for different 
quantitiesr This is a directly accessible quanti ty in a computer  simula- 
tion. Our  aim is to derive an analytic expression for h,(x) under simple and 
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controllable approximations.  It will be shown that h,(x) provides also 
information on the other quantities that  characterize the growth process, 
like ~ , ,  and n~.,. We start from the case of IP  ( f f , = ~  and G,=O), for 
which our scheme can be compared  with rigorous results, 19~ and later we 
will turn to the general case. 

4.1.  S o l u t i o n  for  IP 

The first step to derive an equat ion for the empirical distribution con- 
sists in taking the difference of Eq. (6) for t +  1 and t. Since re,+ ~= if, w { i,} 
and Pi,., = m,(x [ z), this is h,+ j(x) = h,(x) - m,(x I r) + N,+ 1 - N, + 1. This 
still contains r andom quantities so we take the average ( - )  over realiza- 
tions and we define s = ( N , >  and co, = 0,g2, = ( N ,  + ~ - N,>. For  a fixed 
realization of cg,, the average over the realizations cr ~ of m,(x  ] r) yields 
( m , ( x  I r)>~, = ~ n~.,p~.,m,(x[ r ) =  --OxZ,(x). This gives 

<h ,+ l (x )>  = <h,(x)> +O.~(Z,(x)> +09,+ 1 (7) 

which is still an exact relation. The boundary conditions for this equation 
are (with the usual convention on uppercase notat ion)  

< H , ( I ) )  =12, 

( H , + l ( l )  > = < N , + l >  = ~t~,-]-  0 )  t 

<h,+ l(0) > = 0 9 , +  1 

(8) 

(9) 

(10) 

Here the first two are statements on the total number  of  sites in 0cg, and 
0ff,+~, while the last one derives from the observat ion [see Eq. (4)]  that 
p~. ,(0)=g~. 0 for any t and that  <h,(0)> = -O.~(Z,(x))lx=o=no.,.  

In order to obtain a closed equation for (h,(x)>, we have to express 
both  <Z,(x))  and < h , + , ( x ) )  as functions of  <h,(x)). These are the two 
main sources of  approximat ions  in the solution for the histogram. The 
second is controllable,  since once a solution for <h,(x)) is found, the 
approximat ion  used for (h ,+ , ( x ) )  can be checked by power expansion in 
the time variable a round t. 

The approximat ion  for (Z,(x)> comes from expanding (1 - P~.,) ..... = 
exp[n~., log(l  - P~.,)] "" exp[  -n~.,P~., + O(P2r.,)] in Eq. (2). When x is 
small the terms of higher order are small compared  to the first. On the 
other hand, when x is close to 1, Z , (x)  is exponentially small in N,. These 
considerations justify the approximat ion  of retaining only the first term: 
( Z , ( x ) ) ~ _ < e x p [ - H , ( x ) ] > .  The same approximat ion  is obtained in 
another  way with the use of  a Poisson t ransformation I~) in the Appendix. 
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Note that from Eq. (2), Z , ( I ) = 0 ,  while in the above approximation 
(Z , (1 ) )  = exp ( -N , ) .  

Since h,(x) is a histogram, the number of sites whose variable is found 
in the xth bin (i.e., x <~ ei < x + dx) should follow a binomial law with mean 
(ht(x)) dx and variance (h,(x)) dx [1 - (h,(x)) dx/Q,] ~- (h,(x)) dx. 
This would suggest that (exp[-H,(x)]>=exp[- f l (H,(x))] ,  where 
fl < 1 should account for the first two cumulants, while the central limit 
theorem should rules out the higher ones. If 

exp[ - f l (Ht(x))  ] - -  exp[ -fig2,] Z,(x) ~ (11) 
1 - exp[ - f l O , ]  

is put in Eq. (7), we easily find that the conditions (8)-(10) are satisfied 
only if fl is the solution of 

r =  1 - - e  - f la'  ( 1 2 )  

The solution fl # 0 is exponentially close to 1, which would be consistent 
with the case in which also the second cumulant of h,fx) is negligible. 
From another point of view, r =  1 would result also if the n~., were all 
independent variables distributed with a Poisson law (see Appendix). We 
will return later to this point when comparing the results to numerical 
data. For the moment we take (Z,(x)) as given by Eqs. (11), and (12) so 
that Eq. (7) becomes 

(h,+l(x)) = (hi(x)}{ 1 -exp[ - f l (H, (x ) ) ] }  +co ,+  1 (13) 

We now introduce the function ~k,(x)=(h,(x))/O, and expand 
(h,  + l ) in the time variable around t: (h ,  + ~(x)) = g2,~b,(x) + co,ck,(x) + 
O,O,ckt(x) +.. . .  Our strategy is to retain only the term proportional to 
~b,(x) and to check on the solution whether the other terms are relevant. 
Equation (8) implies that ~ b , ( x ) = l .  The choice ( h , + l ( x ) ) =  
(t2, + co,)~b,(x) satisfies Eqs. (9) and (10), which implies that 

co,+ 1 (14) 
$ , ( 0 )  - ~ ,  + co, 

In this approximation, after some algebra, Eq. (13) yields 

Ox~,(x)= fll2,q~Z(x) [1 co, ] co,+ 1 ~b,(x) (15) 

which is readily integrated to give ~b,(x) in implicit form 

( 1 
co' l o g \  +l_co, dp,j-~=flt2,(x-x~(t)) (16) 

cot + 1 cot 
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where 

1 12t +09 , 
x~(t) = flO,r + l) (17) 

and Eq. (14) was used for ~b,(0). It is a matter of algebra to verify that 
~ q~,(x) dx = 1 is satisfied. 4,(x) is monotonously increasing [see (15)]. For 
x = 0  its value is of order 1/12,, while at x=x~( t )  it attains a finite value 
~b~0.7822(1 +09,-~). The x~(t) is also very close to the point where the 
second derivative of ~, vanishes [and ~ ,=2(1  +o9;-1)/3]. Finally at x =  1 
it reaches the value ~, (1)= (1 + co,)/[09, + 12, e x p ( -  fit-2,)] - 1 + 09,-i. Some 
algebra shows that for 0 < x ~ ( t ) - x ~  1/log 12, the function ~, is still close 
to ~,(0) and is of the order of log t2,/12,. It is of the order ~, ~ 1/log 12, for 
0 < x~(t) - x ~ log log 12,/12,. Above x~(t) we find that ~b,( 1 ) - ~b,(x) ~ l/t2, 
for O < x - x ~ ( t ) ~ l o g O t / t 2  ,. So there is a small interval in which ~b,(x) 
changes rapidly from ~b,(0) to ~b,(1) [in this interval indeed its derivative, 
Eq. ( 1 5), is large ]. 

Equation (16) also allows us to evaluate 0,~b,(x) and check the validity 
of the approximation. This can be cast in the form F(~,, f2,)= 0, where the 
dependence on t comes in O,. Then 0 , ~  t = -09,Oa, F/O,F. which reads 

i a,C,(x)=/~09,~,2(x) 1 -  09' 09' 09,+ir [x-xc(t)]=-ff,(x-x~)O,~ (18) 

From the above estimates of ~b t we find that ~,a ,~ ,  is small in absolute 
value. At most it has a sharp peak of the order of log log ~2t/(log ~2,) 2 close 
to xc. Thus it is vanishingly small w.r.t. (~2,+09,)~, as ~2,~ o% which 
supports the validity of the approximation. Higher time derivatives of ~,, 
which can be explicitly calculated in the same way, also yield a negligible 
contribution as ~2, ~ or. 

Note that 12,0Ab, is of the same order of 09Ab, up to x ~ x ~ -  1/log 12,. 
The function O,q~t(x) decreases below x~ and it increases above x~; a,~, 
vanishes very rapidly over a length of the order of 1//2, for x > x~ and 
~o O,~,(x)dx---0, apart from exponentially small terms. So the total loss of 
r below x c is compensated by its increase in a small region above xc. 

One unpleasant feature of the approximation used is that (h , (0) )  is 
fixed by the boundary conditions. The undesired consequence of this is 
that, since (h , (0 ) )  = (N ,  - N,_ 1 ) = 09,_ 1, Eq. (14) yields a recurrence 
relation for 12, tliat implies lim, ~ ~o 09, = ~ -  The simplest way to overcome 
this problem is to take ( h , + l ( x ) ) = ( O t + o 3 , ) ~ , ( x ) + 0 9 , - & ,  from the 
beginning. The only effect of this different choice is to replace 09, by o5, in 
Eqs. (14)-(18). Using the expansion ( h, + ~(x) ) = ( h,(x) ) + O,( h,(x) ) + ..., 



742 Marsili 

we can control the approximation requiring that the L 2 n o r m  of the error 
d ( h , + , ( x ) )  = ( h , ( x ) )  +O,(h, (x) )  - [ ( I 2 , + o 5 , ) ~ b , ( x ) + t o , - o S , ]  is mini- 
mum. This condition fixes the value of o5, which, once the calculations are 
worked out, is 

30) t 
r = to, + - -  t- O(f2,--2 log f2,) (19) 

2f2,xc(t) 

Thus, in the end, this refinement of the approximation implies only a shift 
of co, by an amount  of order 1/I2,. 

Figure 1 displays the histogram from l 0  6 realizations of t =  110 IP 
clusters compared to the solution G(x). The values of f 2 , -  ~ 106 and 
co, "- 0.853... were computed in the simulation. The accuracy of  the solution, 
as expected, gets worse as xc is approached. 2 The accuracy improves as I2, 
increases. Note that ~b,(x) has a sharper character than the numerical 
histogram, which may be indicative of  a too large value of  f2, or ft. The 
weak point in our scheme, which is also the hardest to deal with, is the 
approximation on ( Z , ( x ) ) .  The same assumption that ( Z , ( x ) )  depends 
on the RTS through (h , ( x ) )  is by no means obvious. 

The histogram G ( x ) = ( h , ( x ) ) / f 2 ,  converges to a step function as 
t---, oo. This is the behavior that is actually observed for empirical distribu- 
tions in quenched growth models. In IP  the location of  the discontinuity 
coincides with the critical threshold Pc and we find 

1 
p c =  lim xc(t)= lim - -  (20) 

The limit of to, as t --. oo in IP  is the surface-to-volume ratio of  the cluster. 
In ref. 9 this relation was derived rigorously for IP. The last relation is very 
similar to the one that results from a partition function approach for the 
self-avoiding walk ~2) where the critical step fugacity k c is related to the 
average number  b, of bonds that can be added to a walk of t steps: kc = 
lim,_o~ 1/b,. The similarity is even more suggestive in terms of  no. ,= 
09,+ 1. The relation p c = l i m  . . . .  1~no., implies that asymptotically the 
average number  of  the newly added random variables that are smaller than 
Pc is one. Figure 2 shows that Eq. (20) is satisfied quite well in IP. The 
motivation for the choice of the variable t-~/o~ in Fig. 2 comes from scaling 
relations in ordinary percolation. The size ~(p) of the typical cluster is 
connected with the deviation from Pc as ~ ( p ) ~ ( p c - p ) - L  This is also 
related to the mass t via the fractal dimension D: ~(p) ~ t ~/~ These scaling 
relations together imply that P c - ( l  + t o , ) - ~ t - l / n v .  The slow 

2 The discrepancy for x > x~(t) is required by the normalization condition. 
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Fig. 1. Empirical distribution h,(x) evaluated in a computer simulation ([3) compared to 
~,(x). A total of 106 clusters of size t = 110 were generated. The parameters in ~,(x), computed 
in the simulation, are ~ ,  -~ 106, co, -~ 0.853 (full line), and ~5, -~ 0.875 (dotted line). 

\ 
\ 

0.58 
\ 

\ 

0.56 

~'~ 0.54 
+ 
v 

0.52 " \ \  ,,, 

0.5 

\ 
\ \  

0.48 
0 O.1 0.2 0.3 

L-I/D~ 

Fig. 2. Effective threshold pit) = l/(og, + I ) from numerical  s imula t ion  ( 10 6 cluster  of size 
t = 800) for site invasion percola t ion on the square lattice. The form pr(t)= pe(oo )+ At-t/o,. 
suggested by scaling considerat ions  (see text), is used in a l inear ext rapola t ion  in the range 
150 < t < 800 (dashed line), which yields p ~ ( m ) =  0.5924 + 0.0010, in excellent agreement  with 

est imates of Pc in square site percolation.  
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convergence to Pc makes it hard to use this method to evaluate the critical 
threshold: to get (1 + r within 1%, Pc clusters of the size of t ~ 10 5 are 
needed. 

Once (h,(x)> is known, we can also evaluate the distribution of the 
minimum variable in 0~,: <m,(x)> = - O x < Z , ( x ) > = m , + l - a ~ , ~ , ( x ) .  In 
turn, <M,(x)>=~<m,(x)> provides an approximate expression for 
pr.,(x) through Eq. (4). Actually we cannot evaluate the average of the 
product of Mk(x) in Eq. (5), but only the product of the average values 
<M,(x)>. Using Eq. (18) and expanding <M,_k(X)> in the time variable 
around t, we easily find that <M,_k(X)> can be replaced by <M,(x)> at 
the expense of errors of the order of k/~2,. Within these approximations the 
RTS p,.,(x)~-A(M,(x)> ~ can be used in Eq. (1) to get an estimate of the 
GPD: 

f/  M~'(x) lG.,= ~M~(y)dy  [1 - M~(x)] dx (21) 

where a factor Z,(x)= 1 -M, (x )  has been singled out in the integrand of 
Eq. (1) and we have suppressed the average symbol. The above integral is 
easily evaluated numerically. 3 Since the limit l im,_~/2, . ,=/ lr .oo is finite 
and/x~., =/2,.~ + O(g2,]),  we leave the discussion of the G P D  for a later 
paragraph, were /~ .~  is analyzed. 

Finally from the estimate of p,.,(x) we can also find an approximated 
expression for n,.,. This is achieved expanding both sides of 

n,., M,(x) (22) I2,r 
" Io' M : t y ) d y  r = O  

which defines <h,(x)> in powers of x. All the derivatives of 4), and M,(x), 
as well as the integral of M[(x), can be evaluated explicitly, so that 
equating the coefficients of x k on both sides yields a system of linear equa- 
tions for n,.,. We just mention here the leading term in l/Y2,, which is 

1 
n~., = o), + r---~ + 0 ( ~ 7 1  ) (23) 

This concludes the exposition of the results for the IP model. In 
summary we have been able to give an estimate of all the quantities 
appearing in Eqs. (1)-(4). Due to the approximations used, which are too 
severe with respect to time correlations, our results, especially those 
concerning the RTS, the GPD,  and nr.,, are not expected to meet more 
than qualitative agreement with the actual quantities. 

3 The integrand can be expressed as a function of M,(x) alone and then a change of integra- 
tion ~l,(x) dx = dM leads to a definite integral in M. 
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4.2. The General Case 

The extension to the case ~ ~ ~5 of the procedure outlined for the IP 
model follows the same guidelines. The only difference is that in taking the 
difference of Eq. (6) for t + 1 and t the new term Zi.,,pi.,(x) appears. The 
origin of this new term is model-dependent. The way in which the sites in 
~, are chosen in O~, may depend on geometric properties of the interface 
in a neighborhood of the site with the minimum RV. Examples of this sort 
will be discussed in the next section. One could also think of a mechanism 
of growth independent of the location of the smallest RV. Think, for 
example, of a modification of IP in which the sites in if, are chosen 
randomly with equal probability in 0~f,. This generalization would include 
IP and the Eden model, when G,=  Ira,1 ,> 1, as particular cases. For this 
model 

< ~. > 7, (h,(x)} (24) ,~,,p,.,(x) =~, 

where 7,= (G, ) .  We will discuss later how to improve this equation to 
account for the situation in which the growth events of ~, and of i, are not 
independent. 

The boundary conditions (8) and (9) still apply, while that on 
(h,+ ~(x)) must be modified to 

(h,+ ](0)) = y, + co, + 1 (25) 

The same approximation (11) for (Z,(x)) is used, but now the same 
algebra shows that Eqs. (8), (9), and (25) imply that fl is a solution of 

f l = ( l - - ~ , )  (1--e  -'a') (26) 

and the equation for the histogram finally becomes 

(h,+,(x))=(1- ?'-~,,) (h,(x))(l-e-'<n'(x)>)+ ),,+co,+ l (27) 

As before, (ht(x))=12,$,(x) and we take (h,+t(x))=(12,+cot)r 
Then Eq. (14) generalizes to 

~b,(0) - 7, + co, + 1 (28) 
Qt.+ cot 

while the solution is given by 

Y'+co' l o g [  (12 , -y , )~ ,  ] 1 
) , ,+co ,+ l  ) , + c o , - ~ ' l - - - ~ , + c o , ) $ 1 - ~ = f l t 2 , [ x - x c ( t ) ]  (29) 
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with x c ( t ) =  [fls The same considerations discussed for the IP 
case are readily translated to this general case. Again we can control  the 
approximat ion on (h,+l(x)) and eventually refine it with a "renor-  
malized" value &, of  co,. Also, the evaluation of the RTS, of  the G P D  
(which refers only to the site with the smallest RV), and of nr., follows the 
same guidelines and does not  need further discussion. 

As a final remark we discuss a refinement on the approximat ion  of 
Eq. (24) when the G, sites are chosen in a way that  depends on the site i,. 
To  improve the approximat ion  on ~ , p ; . , ( x ) = ~  g~.,p~.,(x), we note 
that  Eq. (24) implies that y,n~., = t2 t g~.,. This means that  the probabil i ty  of  
a site in 0cr to be in ~ is the same for all sites (i.e., y,/g2,) irrespective of  
their r value. Often the mechanism to select the sites in if, involves only the 
close neighborhood of/ , .  It is then likely that  in this case g~., will be larger 
for r small than for r ~> 1. Within our scheme we can enhance in a simple 
way the importance of the r = 0  term in the sum on if,. This is accom- 
plished taking g~., = ~,n~.,Ig2, + ( y , -  ~,)6~.o, so that Eq. (24) becomes 

(i~.~ p~.,(x) ) = ~  ( h,(x) ) + y , -  ~, (30) 

This is easily seen to provide the same solution outlined above but with y, 
replaced by ~,. So finally this refinement only implies a shift in the 
threshold value. The magni tude Oy, = y, - ~, of this shift is a parameter  that  
must be supplied by consideration of the actual mechanism of growth; 
however, if go., is of the same order as g~., for r > 0, the shift is expected 
to be 6y, ~ },,/~2,, which is vanishingly small as g2, ~ oo. This argument  can 
also be applied to the r =  1 term. This indeed would yield in Eq. (30) a 
term which is propor t ional  to ( M , ( x ) )  = 1 - ( Z , ( x ) ) ,  which can also be 
expressed as a function of (h,(x)).  In principle this procedure could be 
extended further to deal with r = 2, 3 ..... The extension is straightforward,  
but since it depends on the specific mechanism of growth, it will not be 
discussed here. 

4.3. The Case t~t=O 

A particular case worthy of ment ion is that of  y , > 0  and ~o,--0. 
Models recently introduced for interface growth {4} and for biological evolu- 
tion TM are exactly of  this type. We briefly ment ion the former. In d = 1 + 1 
dimensions, the interface grows along an infinitely long lattice whose trans- 
verse size is L. Cylindrical boundary  conditions apply in this direction. The 
surface is pinned by a r andom force modeled assigning a RV to every site 
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of the lattice. The second ingredient of the model is surface tension, which 
tends to minimize the extension of the interface. In the extreme case 
(infinite surface tension) the length of the interface is fixed to its minimum 
possible value (i.e., L) by a height difference constraint that forces the inter- 
face on one column to be at the same height or one unit above or below 
the interface on neighboring columns. When the site i, with the smallest 
random variable among those on the interface grows, also all the sites that 
are necessary to recover the single step constraint are forced to grow. Since 
the number of sites in the interface is always fixed to L, we are exactly in 
the case co, = 0, while 7, is the average number of other sites that have to 
grow to recover the constraint. Other models of the same sort may involve 
a milder mechanism for the minimization of the interface length, allowing 
for a stochastic readjustment of the interface in the region close to i,. 

The peculiarity of these models is that since s  is fixed, they 
evolve in a stationary regime of growth. The guess (h,+~(x))=g2,q~ = 
(h,(x)) in Eq. (27) is exact for the steady-state empirical distribution 
[note indeed that O,q~,(x) oc co,]. This forces us to change slightly the nota- 
tion: for L fixed, we define YL as the steady-state average value of y,. The 
discontinuity in the empirical distribution appears in this case in the 
L---, oo limit: Pc = limL_ oo (1 + YL)- ]. In ref. 3 a derivation of the empirical 
distribution was given. The result coincides essentially with our ~bo~.(x), but 
the derivation was based on the assumption that all the variables in ~cr 
have the same probability density ~bo~.(x). This is a misleading assumption, 
in our opinion, since the difference in the probability densities of the 
variables in 0cg, is actually the origin of the nontrivial behavior of these 
models. Apart from the discussion of the solution, which again follows the 
same guidelines outlined for IP, we are also in a position to analyze the 
dynamics of relaxation to the stationary solution Lqboo(x). This is usually 
characterized by a relaxation time F -~ that depends on the size of the 
system through the dynamical exponent z: F ~  L - : .  A suggestion in this 
respect comes from the fact that Eq. (27) is mapped into that for the IP 
model, Eq.(13), if g 2 , = L - y ,  and co,=7,.  At t = 0 ,  in both models, 
(ho(x)) is a constant and the same function, apart from an overall factor, 
at time t is obtained iterating t times Eqs. (27) and (13). Since in IP the 
number of iterations needed to get an interface of J 2 , = L  sites is 
proportional to 12,/co, = L/y,, we expect F -1  oc L/y, and z = 1. 

A more rigorous procedure is to consider Eq. (27) as a functional 
relation that yields ~b,+l(X)in terms of ~b,(x): i.e., ~b,+ t =l'y,{~b,}. In the 
following we consider the situation in which the value of y, is fixed to 
yt=Yl. In situations where ~4) this parameter is not fixed from the 
beginning, 7t reaches its steady-state value with a relaxation law that may 
be independent of that of the histogram. Here we suppose that 7, relaxes 
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faster than the his togram to YL or else that  it relaxes so slowly that  
~b, = ~t~'U) evolves with y, adiabatically. 4 

The opera tor  1">.~ has the fixed point ~tr~). The dynamical  relaxation is 
related to the damping  of a small per turbat ion in r tr') = r + 6~ at the fixed 
point: 1"~,,{~~ ~ }  = ~t~'~+ e-r6ga to linear order in 8~. Actually such 
a simple relation for the evolution of per turbat ions does not hold in our  
case, since 

o l lo" ,o~ - , o o  L .,<r 6ck(x')dx' (31) 

and it is not possible to find 6~b ~-0 such that  the last term is propor t ional  
to &b itself. A solution is instead possible if we require that  

0 . ~  6~(x')dx'=~6q~+q(l-~b~r~ >) (32) 

where ~ and q are parameters.  The solution of this equation reads 

6r = yL(1 _ _ ~ ) Z  {(yLX<--X)O.~qb~ -- 4b[- 1 + yLCC4boo(1 - ~ b ~ ) ] }  (33) 

The relation 

explains the meaning of Eqs. (32) and (33). These state that  the opera tor  
1">., cannot  be linearized at the fixed point  ~dt>'~ but a round the "fixed 
point"  ,~t>.,+~ro where 6 y t = ( 1 - - y L / L ) ( y t +  l)q.  Both 6~b and 8Yl. are "t 'oo 

proport ional  to q and, as r/oc e-r '-+O, the fixed point  ~b(>'~ ) is reached. 
This is a physically sound effect: the steady-state empirical distribution is 
reached by eliminating the excess of  small r andom variables on the inter- 
face. Indeed 6 y L > 0  implies that  6 x c ( t ) < 0 ;  then x<(t)~x<(oo)-  as 
6yt ~ O. We finally note that  ~ has to be smaller than ~ ( 1 ) ~  YLI(YL + 1 ) 
to avoid divergences in (33) for x _~ 1. Taking ~ = cyt. /(yt  + 1) with c ~< I, 
we get in the end 

T s '~'L + <~>"~> + '54'} = a'<>" +'~>'"> ( L )  L,>,LIV'oo "too + l - c  6ok (34) 

which readily yields F ~-yl./L and z = 1. Note  that  the characteristic time 
diverges as Yr.-+ 0. This limit is achieved in a model  of  interface growth 

4 The dependence on ),, is made explicit in ~ in this section. 
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with no surface tension. At each time step the smallest RV is selected 
among those on top of L adjacent columns and the corresponding column 
advances one lattice spacing. The process has clearly no steady state, since 
every column is pinned by always increasing random variables. 

5. A S Y M  P T O T I C S  

This section is devoted to the analysis of the asymptotic behavior of 
the quantities appearing in Eqs. (1)-(3) as /2 ,  ~ oo. This is the asymptotic 
time limit when co, > 0, while it is the limit g2, = L--,  oo for co, = 0. The 
empirical distribution, as already discussed, tends to a step function with a 
discontinuity at Pc = lira, ~ ~: ( 1 + co, + y,) - a. The distribution of the mini- 
mum instead tends to 

Mo~(x) = min( 1, x/p c) (35) 

which is also evident from the power expansion of 

M,(x) = [ 1 - (y, + co,)/12,] y + (y, + co,) y2/(2~,) + ... 

with y = x/pc. The function Mo~(x) is the starting point for the calculations 
in this section. This will be used to evaluate the RTS p~.,(x) from Eq. (5) 
and then the G P D  and nr. , with a procedure already sketched for the 
IP case. These quantities will finally allow us to evaluate the "avalanche 
size" distribution to be defined later. With this introductory outline we 
wish to make explicit from the beginning the approximations involved in 
this section. This is actually severe with respect to time correlations since 
the average of the product of M,(x) in the evaluation of the RTS, Eq. (5), 
is substituted by the product of the average. Furthermore, we take 
Mt_k(x ) ~- M,(x) for k ~< r and 

M~'(x) (36) 
P"' -  ~o M~,(x') dx' 

which is a more controllable approximation, since, as discussed in 
Section 4.1, it only introduces an error of order z/f2,. The results derived 
within these approximation are, however, expected to give qualitative 
information on the actual behavior of the models considered. 

With this proviso, taking M , ( x ) =  Mo~(x) in Eq. (36) and using the 
resulting RTS in Eq. (I) ,  we find the following expression for the GPD: 

f~ (r+l) y~(1 --y) 
/a,.o~ = 1 + (r + 1)(y,+ co , )_y , +  ~ dY (37) 

822/77/3-4-16 
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This is easily evaluated numerically, but a simple closed expression is not 
available. The fact that l ima,_ o~ P~., =/z~.~ is finite excludes the possibility 
of a multifractal behavior of  the G P D ,  which is observed in other growth 
models that, like IP, produce fractal patterns. Moreover,  we note that 

. . . .  ~- r - 2 / ( y ,  + o , )  + O(r -3) for r>> 1. 
We can next investigate the asymptotic distribution of  times, that is, 

nr.o~ = l im,_ ~ n~.,. This is done by taking the limit on both sides of  Eq. (2) 
and using the above approximation for the RTS. It is easy to realize that, 
for x > Pc, both limits yield zero. Instead for y = x/pr < 1 this reads 

I [ 1 
1 - - y = e x p  E n .... log -l ~- ;~-- l ) ( - -y~+~)~)JJ  

k r = 0  

Differentiation of both sides yields 

( r + l ) y  ' 
1 = (1  - y )  nr, 

�9 =o ~ 1 + (r + !)(7, + ~  T M  

o~ n The normalization of the asymptotic G P D  Zr  .... pr.o~= 1 is indeed 
recovered, integrating between 0 and 1 this equation. For  y = 0 we again 
find n0.o ~ = y, + co, + 1. A system of linear equations for n .... results from 
equating the coefficients o f y  k in the expansion of the r.h.s, to zero for k > 0. 
A simple expression is not possible for any r. If r -  1 is a prime integer, we 
find 

n~.o~ = [ y , + c o , +  1 / ( r +  1)][1  + ( ? , + c o , +  1) -3 ] 

For  general values of  r more terms appear in the second bracket, while the 
first factor (the leading one for r ~  oo) remains unchanged. The result 
n .... = y, + 09, + 1/(1 + r) derives easily from the same procedure if Z , ( x )  "-, 
exp[ - f l H , ( x ) ]  instead of Eq. (2) is used. This agrees with the estimate of  
n~., given in Section 4.1, but it does not yield the normalization of  the 
asymptotic GPD.  

The distributions/1 .... and n .... allow the evaluation of  the avalanche 
size distribution. In a process like IP, growth occurs in avalanche events: 
when a site becomes part of  the cluster it will likely be followed by its 
nearest neighbors, these by their neighbors, and so on. This happens 
because a site may "open" a region of  the lattice where the random pinning 
force is weak, so that further growth will occur in this region. In this case 
the initiator site i 0, which grows at time to, is followed in the evolution by 
sites with e,., < e~0 which are causally connected with it since they were not 
in c~,o when i 0 was selected. The avalanche process stops at a time to + s 
when all the newly added perimeter sites have e~> eg o for i~a~,o+. ,. Alter- 
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natively we can say that the avalanche stops when a site that is "older" 
than i o grows. If  this happens at time to + s, then for this site we must have 
z/> s. The probability that the avalanche stops at time to + s it then just 
Z~>~n~.,op~.,o. The probability W,(s) that the avalanche initiated by the 
growth event at time t is bigger than (or equal to) s is then the probability 
that the avalanche did not stop before time t + s, that is, 

W,(s) = lq  l -  
k = l  r~>k 

We are interested in the behavior of  this quantity for t ~ ~ and 1 ,~ s,~ t. 
In this limit we can use the above estimates of  n .... and p ..... The sum is 
easily evaluated as an integral and some further algebra yields 

lim W,(s) = W~.(s) ~ s - ~  
/ ~ o c .  

The appearance of  the power law crucially depends on the fact that 
n .... p .... decays exactly as r -2, while the value of  the exponent is given 
by h ' = l i m  . . . .  t2n~,o~p .... = 1. This exponent implies that the average 
avalanche size diverges logarithmically. In real models this divergence has 
a power-law character and the exponent x is smaller than 1. For  example, 
in IP  the avalanche size distribution is related to the cluster size distribu- 
tion of  the percolation at Pc and x = 5/91. The discrepancy is related to the 
approximations used; it is important  to stress, however, that already at this 
level one is able to capture the correct behavior of/z .... which is respon- 
sible for the appearance of  a power law in the avalanche size distribution. 
A more sensible approximation is needed to obtain a more realistic value 
of  the limit that  defines K. 

In some situations one is interested on the growth process inside a 
small region of  the interface. This occurs in the application of  theoretical 
schemes like the real-space renormalization group or the fixed scale trans- 
formation (7) (FST). The latter was applied successfully to IP  (s) yielding 
very accurate results for the exponents. As shown in ref. 8, the scale- 
invariant dynamics, which is the base of  the FST approach,  can be defined 
using conditional probability and the RTS. Actually this was done in ref. 8 
mising one of the passages in Eqs. (17-(4). More precisely, Eq. (3) was not 
considered and the RTS of  the growing site i, was used instead of M,(x I r) 
in Eq. (4). In other words, the information that the growing site had the 
smallest variable was not accounted for properly. A consequence of  this is 
that the distribution function that comes in the evolution can only have the 
form of a simple power p~.,(x)=(k+ 1)x  k. These of  course cannot 
reproduce a step function in the large-time limit and would correspond to 
the case Pc = 1. 
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Even if this procedure seems conceptually wrong, it is justified by the 
following considerations and it is in the end almost correct. The key point 
is that in the FST a small region of an infinite or very large cluster is 
considered. In Eq. (3) for m,(x I r) we can factor out Z,(x), 

m,(x I r )=  p~.,(x) Z,(x) 
~,,.,[ Z - P ~ , , ( x ) ]  

which may be approximated by Z,(x) ~_ max( 1 - x/p c, 0) if the interface is 
very large. Since this vanishes at Pc, the effect of Z,(x) is to "renormalize" 
Pc to 1. Moreover, since P~.,(x) is small for x < Pc, the approximation in 
which m,(x[ r)~-pr. ,(x) is a sensible one. This suggests that, in spite of the 
conceptual error, the precision of the results of the FST approach to IP is 
not accidental. The above equations also give a hint on how to refine 
the calculations of the fractal dimension in the FST. Furthermore, the 
formalism outlined in Section 3 can be used in the investigation of more 
complex issues, such as the scale invariance of the dynamics or the 
dynamical renormalization group of quenched growth processes. 

6. O U T L O O K  

The approach described in Section 3 to quenched growth models 
provides information that is not available in direct numerical simulation. 
The knowledge of the GPD allows the evaluation of the probability of a 
given realization. This opens the way to the exact statistics that may be 
used, for example, in small-cluster-size studies in connection with finite-size 
theory. In principle the formalism can be used in computer simulation 
iterating Eqs. (1)-(4) numerically. However, in practice this would be much 
more demanding than direct simulation of the quenched model. A simple 
remedy to this problem consists in a "variational" approach in which the 
RTS is fitted to a parameter-dependent trial distribution. The numerical 
task can be reduced to that of finding the evolution of the parameters that 
optimize the fit. Another example of the use of the GPD is the numerical 
evaluation of the avalanche size distribution along the lines outlined in 
Section 5. 

Another interesting application of the RTS is in models where the 
disorder is coupled to an external field as in the quenched version of the 
dielectric breakdown model ~~ or in recently proposed models for fracture 
propagation, t~3) The extension of the formalism to include such effects 
poses no difficulties in principle. This also opens the way to theoretical 
investigations on the fractal properties of these models in the spirit of the 
FST approachJ 7) A similar extension is also possible for models for domain 
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wall dynamics at zero temperature in the random field Ising model, t61 
where along with the disorder also the occupation of nearest neighbors has 
to be considered. 

On the analytical side, together with the improvement of the 
approximations used in this paper, the description outlined in Section 4 can 
be combined to other schemes like the FST and in the application to 
specific models at least at a mean-field level. 

Research on all these lines is currently active and we hope that this 
paper will suggest and stimulate other contributions. 

A P P E N D I X .  T H E  P O I S S O N  T R A N S F O R M A T I O N  

The average of Z,(x) on the realizatons cg, is given by 

(Z,(x)) = y '  ~ ( ~ , )  Z,(x, ~e,) 
V6",I 

where ~#.-(cr is the probability of a given cluster. The dependence of Z,(x) 
on cr comes primarily because of the explicit exponents n,., in Eq. (2). 
Neglecting other dependences, which cause in the functions P,.,(x) through 
M,(xl r) [see Eq. (4)], the average can be performed on the probability 
~{n~.,} of a given set {n~.,} (note that Pr., does not depend on the 
distribution of times {nr.,} at the same time). The average is easily 
evaluated using the Poisson transformation (1'~ 

~(cgt-,,{nr.t})=f,~(cg,_,, { a,} ) [-J dak ~ e - = k .  nk., ! 

where the new variables 0Ok have of the meaning of the average value ofnk.,. 
With this transformation the sum on nk., can be performed explicitly in 
evaluating the averages, with the result 

and 

(h,(x))~ =~  (at) P,,,(x)=N,(fi(x, t) 
r 

In the average also the term nr . ,=0  for all r is considered and this yields 
( Z , ( 1 ) )  =e-U'v~O. 
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